Science Club: Racing Balloons

A good turnout for the second week, although some pupils hadn’t shown up despite the stories about marshmallows and spaghetti. Apparently this is a regular issue for after-school activities in primary school. Several kids were enthusiastic about telling me the scientific things they’d been doing, including building more structures with kitchen ingredients. So I think we can count the first week as a definite success!
Balloon Car Racers seemed a good next activity; simple materials, a clear outcome and hopefully something to take home. As with the other activities, the materials from the Ri ExpeRimental project gave us pretty much everything we needed.
Materials
We had 12 kids but plenty of leftovers (most earmarked for future sessions). These cost £4 from the pound shop.
  • 250 straws
  • 50 balloons (x2)
  • 100 BBQ skewers
Plus tape, card and bottle lids from general classroom resources and the local scrap store. I’d suggest collecting milk carton lids in the staffroom for a few weeks if possible.
Session
I started by asking about things that go and what makes them move. With each example – which I also used as a chance to get some more names – I added another step to the car. The video was blocked (primary school with YouTube issues) so I couldn’t use the section linking reaction forces to swimming, which was a shame.
I asked the pupils to tell me which they thought was more important – how far the car went, or how fast it traveled. Predictably, there was a mixed response! With more time I would have finished by running a ‘race’ and giving two different rankings, one for speed and the other for distance.
I used a timer on the IWB, set to 20 minutes, for the building time. This was a little ambitious, it turned out! All students had built or nearly built a car by the end of the hour session, and perhaps half had raced them against each other.
car1
Reflection
Some pupils struggled with the fine motor skills needed to use the sellotape. I don’t think I emphasized enough the need for the axles to be parallel to each other, and perpendicular to the ‘exhaust’ straw – perhaps next time draw lines on the card for them? With more time I’d have them make two, a ‘first draft’ and an ‘improved’ model. This would have been an excellent way to introduce the make/test/improve cycle, perhaps using photos of their cars to illustrate the progress. But it would have taken longer – this could easily be done over a week of lunchtimes, perhaps taking a photo each time to show the development visually. I suspect spreading it out over more time would be difficult with such young students, although at KS3 it might make a good structured project.
car3
Pushing the skewers through the lids also proved difficult for many. Next time some preparation would have been useful – especially for some lids! I’d add an awl or corkscrew for the teacher, and blu-tack to press into. A balloon pump to make up for little lungs and reduce slobber might also have been useful!
For future sessions, I’ll think through a specific ‘skills list’ before we start. Ideally the class teacher would be able to suggest particular points likely to cause problems, but I can probably manage. I’d do this automatically for my usual age group – what can they do easily, what do I need to explicitly teach – but I made guesses based on my own kids, who have always enjoyed crafty activities from Lego to junk modelling, (They haven’t a clue about football skills however, just like me.)

Science Club: Building with Pasta

Quick and easy practical, instant gratification, cheap materials (that you can eat at the end). Yes, the first in our series of science club activities was always going to be Spaghetti Towers.
Materials
  • spaghetti (1 pack per four kids)
  • marshmallows (1 pack per four kids, no eating until the end)
Play, Look, Ask (from the Ri site)
  • Make a tower from spaghetti and marshmallows.
  • ExpeRiment with the construction of your tower to find out which shapes are best for building with.
  • Learn why some shapes are more stable than others when you build a tower.

before

I had a vague idea of how things would go. Some of it was right; a lot of it wasn’t. The kids had a great time and, I think, learnt a little bit too. We started by talking about buildings, then I challenged them to make shapes with the marshmallows and pasta. Several of the kids – aged 5 or 6 – enjoyed this so much it was hard to get them to move on. The next step was to try making something to stand up. Before too long we were able to lead them to the idea that squares fell over. A couple of better examples showed that triangles worked well, and soon there were many weird and wonderful structures taking shape.

About twenty minutes from the end I asked them to pause and showed a few pictures on the IWB of buildings. The kids were very excited to point out the triangles on the Eiffel Tower and the Forth Bridge. They were not, however, able to translate these to very regular shapes in their own building. There was a lot of discussion about whether we should test the buildings by pushing from the side or above – an interesting approach would be to add a fan to simulate wind. Perhaps with older students! Most of them were happy to explain that the buildings needed a strong shape as well as a strong material, which I was pleased with.

after

Next time – because we’ll be repeating the cycle each half-term with another group of pupils – I’ll aim for a clearer structure from the beginning. It was harder to get them back on track than I expected. I’m used to being able to ‘steer’ consensus in secondary, but the kids listened, nodded, then carried on doing exactly what they were doing before I’d spoken.

Next time

  1. Picture of a building (if the IWB is working and the blinds are drawn).
  2. Start with flat shapes (set time limit)
  3. What will happen when we stand them up?
  4. Try it out, then ask what the best shape is and how we know (time limit).
  5. What shapes are strong? (triangles are good, squares and more sides can be deformed.)
  6. What makes a tower ‘the best’? (tall, withstands load, withstands force from side?)
  7. Allow time to build the ‘best’ tower

Things to track more carefully:

  • different views of ‘scientist’ and engineer’
  • words used eg strong, bendy

 

 

Science Club: Shortlist

My son’s primary school was looking for more after-school activities. My wife was at the meeting where they discussed the possibilities. And I’m a science teacher with a bit of spare time as my current role is both part-time and out of the classroom.
You can see where this is going, can’t you?
The shortlist
I quite liked the idea of working with kids directly, but I was very aware that as a secondary teacher I needed help. Besides, reinventing the wheel lacked appeal. I had a look at various ‘bought-in’ structures, for example some of those presenting at the ASE Conference. But they were quite expensive. I checked out ideas through STEMnet, many of which were aimed more at KS3. In the end, I presented the science coordinator with two options I felt would provide interest without a huge workload.
The first, predictably, was via the British Science Association: specifically the CREST Star awards for ages 5-11. (I have fond memories of BAYS from my own school days.) There’s a library of activities and kids gain the award after completing a certain number of them. Depending on the age and ability you choose different themed sessions, all of which have support materials ready to use.
The other was slightly less formal. I was fascinated by the ExpeRimental project from the Royal Institution last year, and blogged about it. The idea of providing materials for parents to have scientific fun with offspring is a great one. The second series of videos looks as enjoyable as the first. And I happen to know one of the people behind it, my good friend and virtual colleague @alomshaha. So it seems a natural step to suggest it for a science club for ages 5-6.
The choice
We’re going with ExpeRimental; partly because it’s free, and partly because it means we can provide easy links for interested parents. But mostly because it looks great fun. I’ll be blogging each week about how it went, good and bad, and sharing a few photos of the results (but not the kids). Hopefully a longer piece about the experience will make it to the RI website once we’ve finished the first half-term cycle. I really feel that many of the activities would work well with older students, too. In fact, I’d argue that some of them would provide a challenge for sixth form students if you simply changed the questions you asked. And isn’t that a great recommendation for practicals built from kitchen cupboard and junk box materials?