#ASEslowchat Tuesday: Practicals


I can’t comment on what is happening in my classroom, or my department. Because I don’t have a classroom; instead I work with teachers in their classrooms, supporting their departments. So most of what I’ll be sharing will be at one step removed, but it is based on what ‘real’ teachers have told me is happening in their schools. I’ve played around with the stimulus questions a little.
Which required practicals have you completed with your classes; have you only completed these, or gone beyond them? Why?

I posted a little while back about how I felt the required practicals should fit into a balanced science curriculum. (This was a different post to one from even earlier, based o a draft of the AQA required pracs.) Nothing I’ve seen has caused me to change my mind. The summary is that whether a practical is required or not it should be used in the same way; to support teaching of science content and skills. It might, of course, be worth returning to the required practicals as part of the organised review/revision schedule, because they’re effectively content. Until then, ask the same questions, practise the same skills, as you would for any practical. (And, of course, don’t neglect these aspects if a practical is ‘unrequired’!)

Has the GCSE impacted on the work of the technicians in the department? Have you had any issues with equipment?

Not being in a school full-time, I’m not sure about the workload side of this. I don’t think it’s been a huge issue – certainly compared to lots of ISAs to worry about! (I hope school technicians are being encouraged to contribute to this topic, by the way.) But I have been doing a fair bit about the physics practicals with teachers, in school and by email, so I have a few resources to point to.

There is a dedicated TalkPhysics group for the GCSE required practicals – obviously just the physics ones. It’s fairly quiet at the moment, but I/we would love to see more teachers on there swapping ideas and answers, for example about specific components for I/V graphs or precise methods for using a ripple tank. If you’re not already a member, you can get a free login in a day or so, and the group is open to all. Technicians and all teachers of physics – not just physics specialists – are welcome. Please join in.

Most equipment issues I’ve heard about have been predictable:

  • Getting a class around a ripple tank is hard. Much of the work can be done in pairs by putting a piece of laminated squared paper in a Gratnells tray – other trays are available – adding a centimetre of water with a couple of drops of ink, then making and timing ripples. Very fast, very cheap, and lots of data to criticise.
  • Dataloggers for a=F/m. As you might expect, manufacturers are trying to log complete systems which will work brilliantly for a week then be a pain to set-up and calibrate. If you can use phones in school, kids can probably use slow-motion cameras to collect some useful data. Alternatively, I’m a huge fan (no commision, sadly) of the Bee Spi V lightgate. It displays either speed or acceleration of an object passing through it. It doesn’t log it, which to my mind is an advantage as it means kids have to do the table/points/line bit themselves. They’re £20 each, run on batteries and don’t need to be plugged into any device.
  • The specific heat capacity practical – assuming you have the kit – has always produced data with, shall we say, lots to comment on. An improved method is available from PracticalPhysics, and it’s easier if you can (a) use a joulemeter and (b)record the maximum temperature, not the temperature at the end of the heating time.

How are you developing knowledge of practical work and investigations in your teaching ready for the examinations? 

‘Required Practicals’ is one of the sessions I run in schools as part of my day job with the IOP. So allow me to invite you to a virtual session, which will require you to imagine all the hands-on sections. There are presenter notes with even more links than in the slides themselves. PNCs will often run their own versions of these, and we do a lot at days and events open to all teachers. Please consider this an invitation.

If in doubt, checking out the work of Ian Abrahams is always worthwhile. He’s got a book out with Michael Reiss fairly recently: Enhancing Learning with Effective Practical Science 11-16, which I will buy as soon as my next freelance cheque arrives. Unless anyone would like me to review it, hint hint. He writes regularly in SSR so you’ve probably experienced a flavour of his work already.

A few years ago, Demo: The Movie was unleashed on an unsuspecting world by @alomshaha and co. It should be required watching for all science teachers and departments, and provides some great ideas about how to make demonstrations much better for learning. He’s got loads of films, some of which aren’t directly relevant but the techniques discussed are great. I reflected on some of the material in a blog post too.

Other resources I’d recommend (there will undoubtedly be some overlap) are collated at STEM Learning (the eLibrary that was, once upon a time). And I always like to put in a word for the SchoolPhysics materials by Keith Gibb, author of the Resourceful Physics Teacher.

Something I’ve chatted about in workshops, on Twitter and elsewhere; you may find it useful to break down the POE approach in a slightly more specific way which I call PRODMEE:

  • Predict: what do you think will happen? (encourage specific changes to specific variables)
  • Reason: why do you think that? (from other science content, other subjects, life experience)
  • Observe: what actually happens? (we may need to ensure they’re looking the right way)
  • Describe: in words, what happened? (qualitative results)
  • Measure: in numbers, what happened? (quantitative results, devices, accuracy/precision, units)
  • Explain: what’s the pattern and does it match the prediction? (digging into the mechanism)
  • Extend: why does this matter? (other contexts, consequences for everyday life)

What resources or advice can you share with other teachers about approaching a specific required practical? What issues and opportunities have you come across when going about teaching the required practicals to your classes?

A few suggestions I’ve made in workshops, often based on conversations with teachers; this is obviously an incomplete list!

  • Density is boring; why not provide a few blobs of blue-tac and have kids plot mass against volume on a graph. Make it more challenging by hiding a ball bearing inside one to provide an anomaly to the line of best-fit. Or can students separate LEGO, Mega-Bloks etc based on density?
  • Hooke’s Law: as the kids have already seen it, why not try using strawberry laces? Alternatively, there’s a simple set-up using copper wire from PracticalPhysics. And you can always use it to hammer home the idea of science-specific vocab, because ‘elastic’ bands aren’t elastic.
  • Acceleration: I mentioned Bee Spi V for measuring earlier. My only other suggestion is to always teach it as F/m=a so you start with the cause (force), shared out because of the conditions (mass) which leads to a consequence (acceleration).
  • Ripples: discussed above, but you can also use a speaker as a vibration generator for some interesting results.
  • Heat capacity: An old experiment uses lead shot which falls a known distance and heats up. Like stroking a metal lump with a hammer, this is a nice example of the idea that the energy in a thermal store can increase without ‘heating’ as we might normally consider it.
  • I/V characteristics are a lot more interesting if students must compare results from a mystery component to standard graphs. This is included in the presentation of my workshop, linked above.
  • Resistance, series and parallel: instead of just reusing the old ISA hardware, why not try taking measurements of different versions of squishy circuits dough?

 

 

 

 

Energy Language Thoughts Part 4

Parts 1 (Introduction), 2 (Pathways/Processes) and 3 (Stores) are all available and will help make this more useful. Please continue to comment, on whichever post seems most relevant, if you’ve any queries or suggestions. Thanks to those who have already done so.

Practical Approaches

stores-or-pathways

The IOP guidance begins by taking snapshots before and after an event and describing the changes to various possible associated stores. The alternative is to think about the physical processes – which will be variably familiar to students, depending on age – and thinking about the effect they have on parts of the system. YMMV.

The famous energy circus can be used, but be cautious! Some make much clearer examples than others. In most cases you will need to be very specific about the start and end points you wish the students to consider. I recommend checking out the SPT guidance. In particular, the ‘one step at a time’ diagram shows why chains of energy can cause problems. The suggestion there, which I endorse, is that you:

  1. start with the idea of fuels ie chemical stores
  2. make clear that fuels limit effects, they don’t by themselves cause the effects
  3. give high, hot and stretched objects as equivalents, but as they’re clearly not fuels we associate them with
  4. gravitational, thermal and elastic stores respectively

Explained at SPT

I’d suggest looking at your energy circus for clear demonstrations of these to begin with. Next would come a kinetic store, probably as an endpoint. A gyroscope or Newton’s cradle is a nice example of a kinetic store which lasts long enough to be plausible.

Approaches to consider

You could have a first round to develop some basic ideas, then a second with more complex snapshots (either more than one store involved at the end, or the same kind of store but associated with different objects).

Have students identify just the stores to begin with, discuss them as a class, then come back and add descriptions for the processes. This could be split between lessons; that way you can provide correct stores in the second lesson and concentrate on processes. In some cases, such as the classic filament bulb, two similar pathways will be needed.

  • From: thermal store of filament
  • Via: heating by visible radiation, heating by IR radiation
  • To: thermal store of air in the room

If you want them, here are energy-circus-cards as pdf (includes example and blank cards)

Provide sets of laminated cards with stores, and arrows for the descriptions of processes. Labelled arrows are of course an option, but be aware of limitations and I’d include some blanks.

Again, cards-for-energy-v3 as pdf to save you a few minutes.

An extension could be to suggest measuring equipment and/or units for the relevant stores in each situation. If returning to these examples at GCSE, then recall of the equations are the natural next step.

Consider including actual photographs for some situations that cannot be easily reproduced in the lab; this would be a good way to introduce some examples from biology and chemistry. A food chain in biology might, for example, be described so:

  • From: chemical store of lettuce
  • To: chemical store of rabbit

Then

  • From: chemical store of rabbit
  • To: thermal store of rabbit, kinetic store of rabbit, chemical store of fox

And finally

  • From: thermal store of rabbit, kinetic store of rabbit
  • To: thermal store of air

For chemistry, exothermic reactions will involve heating by particles and/or heating by radiation pathways. If the material explodes (which in my experience is the preferred result) then there is some kind of mechanical working too, yes? Be prepared for questions about state changes; the best approach is that latent heat means the thermal store is not only identified by the temperature change. Which, yes, is a complication.

It’s probably worth adding notes – mental or otherwise – to the other science topics so you can remind students of the new language. If you have particular queries, drop me a line in the comments or, for a more considered answer, join in with the discussions on TalkPhysics.

This seems like a good chance to consider the Big Ideas in Science Education. Which should be up anyway, somewhere, but it’s always nice to have a reminder.

Exams and Textbooks

This is where I must admit defeat. I know – in fact I started the first post in this series with this point – that teachers want to know what will get marks and what won’t when it comes to the exams. Sadly, I don’t know. At least one board used the old language in the sample papers originally made available. The list of stores is not consistent between boards, though I hope that makes more sense after Part 3. And so on.

I’m sure we’ll all be happier once we see more examples of possible questions, but I’m not involved much with the boards so I have no insight. My advice – which isn’t official IOP guidance, nor is it specially informed – is that if your students can explain the mechanisms behind the transfers, they shouldn’t need to worry about the language, either pathways or processes. For the stores, it’s probably more important that they can identify the equations that are relevant and be able to do the maths – that, of course, hasn’t changed! I’ve recently discovered that Richard Boohan is putting together some materials; I shall be watching with interest.

Whether students will be penalised for talking about light energy, sound energy, electrical energy – that I don’t know. I also don’t know how much emphasis will be placed on this language by those marking biology and chemistry questions. So I’m not much good, really. Sorry!

Last appeal for comments, feedback, criticism… please let me know what you think of these four pieces. At well over 3000 words I appear to have accidentally written an essay. I hope that if you’ve waded through it, you feel it was worth your time. Please do give me a shout if there’s something I can do to improve the time spent vs time saved ratio.

Required Practicals

Morning all. I was at the Northern #ASEConf at the weekend, had a good time and had lots to think about. I’m going to try really hard to blog it this week, but I’m buried under a ton of stuff and pretty much every person in my immediate family is either ill, recovering or about to go into hospital. And Trump apparently won, which makes me think it’s time to dig a fallout shelter and start teaching my kids how to trap rabbits for food.

Anyway.

One of the recurring discussions between science teachers is about the new required practicals for the GCSE specs. I’m trying to put some resources together for the physics ones as part of my day job, on TalkPhysics (free to join, please get involved) and thought I’d share a few ideas here too.

Who Cares?

The exam boards don’t need lab books. There is no requirement for moderation or scrutiny. There is no set or preferred format. And, realistically, until we’ve seen something better than the specimen papers there’s no point trying to second-guess what the students will be expected to do in the summer of 2018.

So apart from doing the practicals, as part of our normal teaching, in the normal way, why should we do anything different? Why should we worry the kids about them? Why should we worry about them? There’s time for that in the lead up to the exams, in a year’s time, when we’d revise major points anyway. For now, let’s just focus on good, useful practical work. I’ve blogged about this before, and most of it comes down to more thinking, less doing.

Magic Words

What we can do is make sure kids are familiar with the language – but this shouldn’t be just about the required practicals. So I put together some generic questions, vaguely inspired by old ISAs (and checking my recall with the AQA Science Vocab reference) and ready to print. My thinking is that each laminated card is handed to a different group while they work. They talk about it while doing the practical, write their answers on it, then they get added to a wall in the lab. This offers a quick review and a chance for teachers to see how ids are getting on with the vocab. The important thing – in my view, at least – is that it has to be for every practical. This is about improving fluency by use of frequent testing. And it ticks the literacy box too.

EDITED: more cards added, thanks to suggestion from @tonicha128 on Twitter.

So here you go: prac-q-cards-v2 as PDF.

Please let me know what you think, whether I’ve made any mistakes, and how it works if you want to try it out. It would be easy to produce a mini-test with a selection of these questions, or better ones, for kids to do after each practical. Let’s get them to the stage of being so good with these words that they’re bored by being asked the questions.

‘New’ Physics

I’m sure many other bloggers have posted about this already, but in case it’s passed you by; the new GCSE specification is officially starting from September. Many schools, of course, started teaching from the draft simple because, if you’re delivering GCSE Science over three years, there was no choice. For various reasons I’ve been looking at the AQA version in quite a lot of detail (as my previous post explained) and I wanted to share a summary I put together for the new content. The new material come from both directions, KS3 and A-level. It’s probably worth me explaining this.

Until now, some material was taught at KS3 (assuming you followed the national curriculum matched to the much-lamented SATs) and then assumed for GCSE. Some of this is now explicitly examined as part of the exam at 16. You could, of course, claim that once it’s been taught at age 13 it wouldn’t need to be revisited. Which, in my opinion, is daft. Other material has been taught as part of A-level for years, but hasn’t been part of the KS4 specification for years – certainly in my teaching memory of a decade or so. This will be a particular issue for schools which don’t deliver A-level, because they won’t have equipment or experience.

Energy: less emphasis on heat transfer and no mention of U-values. Note the use of the ‘new’ energy language (stores and pathways/processes) plus extra equations.

Electricity: a few bits of new vocabulary and slightly developed maths eg now explicitly includes P=I2R. Static electricity now includes electric fields, so you might want to try out the oil and semolina demonstration which is a nice parallel to iron filings around a magnet.
Particles: quite a lot of added material. This includes the idea of latent heat and the associated equation, which I don’t think has been taught to this age group since the days of O-level. There’s also lots on pressure in fluids (including gases) and the relationship between P and V aka Boyle’s Law.
Radioactivity: now includes neutrons as nuclear radiation, which personally I think is quite helpful. The vocabulary used distinguishes between irradiation and contamination (You may find this explanation helpful), but there’s less detail on industrial uses.
Forces: Lots added to this topic. Scalars and vectors are now explicit and students must be able to resolve forces at right angle using scale drawings. Levers has been extended to gears. Pressure includes both the equation for a column of liquid (this PhET simulation might help) and atmospheric pressure. The suvat equations are introduced with v2=u2+2as. Students need to be able to find tangents on d/t graphs. There’s new vocabulary to do with inertial mass. Not just the relationships but the identities of Newton’s Laws are needed, as well as a surprising amount of recall of ‘typical values’ such as reaction times, walking and running speeds and so on.
Waves: the sound and light content, previously at KS3, is now examined including mixing of colours and transmission or absorption by filters. Sound includes ultrasound uses. ‘Perfect’ black body definitions and uses are expected. This cheap wave driver might be useful for the required practical.
Magnetism: this includes all KS3 content but extends electromagnetism to an equation previously saved for A-level, F=BIl. The ideas of induced potential and the generator effect are also covered. On a personal note, I’d consider teaching the transformers material twice, once as part of electricity and once here.
Space: many teachers are disappointed that this topic is reduced – and completely missing if students do ‘double’ aka Trinity rather than separate sciences. I’ve always found it a topic which engaged weaker learners due to the big ideas and lack of scary maths, and now they won’t get to see it.
Hope these links are helpful – please comment or email if you have better suggestions or any other thoughts.

 

One I Made Earlier

I had an old webcam. I had time on my hands. And I had an idea.

This was never going to end well.

I’m actually pretty pleased with the result. It’s nowhere near as pretty as the one on Instructables produced by Glen Gilchrist (aka @mrgpg) but it didn’t need any power tools. Which were in the shed, and it was raining.

Start with an old webcam and a cheap lamp, in this case one from Ikea. It’s the sort of thing you might have, just make sure it has a long neck  which holds the head steady. It will need to support a bit of extra mass. (Not weight. Well, yes, weight. Anyway.)

 

DSC_0049

I used Lego, Sugru and cable ties to hold everything together. This has the advantage of being reversible, as well as quick. How you link the two parts depends on the exact models, but Lego means angles can be fixed and changed to suit your purpose. Plus, you know, Lego.

Sugru feels like blue-tack but dries within 24 hours to a firm silicone rubber. I’ve used it for outdoors repairs, making cufflinks (again with Lego, as it happens) and repairing odds and ends from cables to memory sticks. They don’t sponsor me. (Although if they want to send me some free samples…)

It works fine on my laptop, but I’ll need to try installing the drivers on a memory stick to make it properly portable. The plan is to demonstrate this in my new job and try it out myself, without the cost (100UKP+) involved in the decent models. I’ve read about uses (for example these for primary science from @dannynic) but never had the chance to put them into practice.

My first thoughts:

  • use student work immediately for “good because” and “even better if”
  • turn a small-scale practical into a class demonstration
  • have a student commentate on an experiment in progress
  • show hands-on methods like measurements and graph drawing in a realistic way

Not particularly exciting, I know, but I’m expecting to do a lot of improvisation in the new job. I’m currently putting together boxes of demonstrations, quick practicals, tips and tricks for the teachers I’ll be working with. (Post about this coming soonish.) But for now I’d love to have comments giving me better suggestions for how to use my Blue Peter Sugrued visualizer.

A Day in The Life

So I tweeted…

…and then I got some replies. It wasn’t a survey. It wasn’t particularly scientific. But I did think it cast an interesting light on the variety of science teaching. The joy of Twitter is that I was able to check permission (and Yes, I agree it’s a public medium but it also seemed polite) and invite longer comments by email. I’ve not had any of those, completely understandable as everyone’s busy with the end of term rush, but here we go anyway.

I suspect mine needs little explanation. Surely we’ve all used ‘martian landers’ to get kids thinking about forces and parachutes? Lots of great videos as starters and many briefing sheets, like this one from TeachEngineering. Before introducing momentum as a term I get kids to consider how unstoppable moving objects are, as they find that language much more accessible. And giving them the two contradictory facts that beta particles are electrons and there are no electrons in the nucleus is always fun.

 

I wonder how @90_maz changed the teaching of the EM spectrum to suit different classes?

That is indeed varied! I always find classifying an interesting topic to teach but find myself getting bogged down in (fascinating) detail about bats and dolphins if I’m not careful.

The joys of behaviour management… trying to pay attention to potential issues without them feeling they have to play up/down to your expectations.

I find this a really useful approach, but would be a lot easier if I had wifi access or a webcam of some kind. Preparing three paragraphs in advance and asking students to identify strengths and weaknesses, and which belongs to the teacher, is often worthwhile. If I was brave enough I’d record audio of me talking myself through the problem so they can hear/see me ‘thinking out loud‘.

Another varied day – sometimes I wish I was immune to yr8. I’ve never taught the EMPA but would be really interested in viewpoints. Of course, it won’t be long before it all changes again; you might have seen the letter from SCORE on practical assessment, but I’ve not tracked down anything published by OfQual yet.

A great example of how teachers do extra work – effectively unpaid overtime – which is effectively invisible to the wider world. We’re all familiar with working in the evenings, weekends and through holidays, but how many of us have also worked while off sick or on maternity leave?

A really interesting snapshot and I’d value any further detail, from the above or anyone else.

 

 

PBODME Resources

My last post got rather more responses than I expected, which is great. Some of them challenged how I think about using this framework with students, which is even better. I still like it, and I’ll still use it, but it was pointed out that I didn’t make it clear that this was only one of the tools that help students with practicals. I’ve blogged about the different aims of practical work before, and probably will again, but check out articles by @alomshaha for far more eloquent words than mine.

Possible Aims of Practical Work

  • To enthuse – explosions and the wow factor
  • To model and practise technical skills
  • To collect data
  • To boost appreciation of difficulties with data such as random errors and so improve experimental design
  • To illustrate a scientific idea or principle clearly by removing distractions

As I’ve commented in the past, these are all useful aims as long as we are clear in our own minds why we are doing the practical. This might not be shared with students beforehand, but should be afterwards. (NB: I was marked down in a 30 minute observation because students failed to make ‘good progress’ during a practical. The observer had not appreciated that the point was for the kids to struggle and then, in later discussion, to share tactics and appreciate why the concept was hard to observe in school lab conditions.) Of course, we should also vary the kinds of practical work we do!

Responses to the post

Read the comments; my readers put it better than I could. For which many thanks; in a week when it feels like the only things I’ve achieved involve feeding the cats and a pike of marking as tall as my five year old, the feedback really helped. The only addition I’ll make is to quote @fnoschese:

I particularly like the second flowchart (IF/AND/THEN/THEREFORE), something I’ll be adapting over the weekend between decorating and getting another year closer to forty. Unfortunately I can’t copy it as an image so you’ll just have to follow the link.

My PBODME resources

This was originally going to be the only section of this post, but never mind. For your use and interest, hopefully:

  • pbodme as ppt (print slides for a quick display)
  • pbodme flowchart/student capability checklist as pdf

As ever, I’d value comments. Can I ask that if you have a useful link that you add a comment as well as tweeting me? I always worry I’m going to miss something, and that way it’s a proper conversation for everyone.

Also, a general appeal; if you use my materials, for general displays, CPD or with your own students, can you let me know? Always nice to point to wider impact of what I do, quite apart from giving me a nice warm glow. Feedback is the only thing us bloggers ask, after all…