Career Breaks

I recently got involved in a twitter conversation about getting back into the classroom, and what to do between jobs to make yourself more attractive to schools. This post is based on the email I put together, and I’m going to start with the same warning I gave my correspondant.

I should point out I’m no expert on recruitment; I’ve never held a promoted post in school so this is based more on conversations with colleagues and in prep rooms that I’ve had because of my day job.

Money

It’s got to start with supply (and cover supervising). This is always going to be a pain, but the good news is that you get to check out the school in advance. Different schools will have different rules about supply, but linking up with the HoD will help. There are ways to make that link – more in a moment. And exam invigilation, although less of an issue with fewer modules or AS, would still be a possibility.

You could plan to do some tutoring for now. The money isn’t great but the time commitment is fairly low. It’s best through word of mouth, but getting started with a few notices on community noticeboards and the coffee shops near colleges and sixth forms where students hang out can be effective.

The other choice is some kind of freelance publishing, possibly starting with TES or similar. If you have time, this is a good way to brush up on your pedagogy and stay familiar with specifications. Producing some generic resources on HSW or similar will be a useful thing to take with you when on supply, as it shows you’re a competent specialist. Other publishing stuff comes up online from time to time, but the hourly rate is fairly low.

Admin/Applying

Now’s the time to bring your CV up to scratch and work on phrases that will go into a cover letter. Review the CPD you’ve done and summarise responsibilities, so all the dates are to hand. Scan your certificates then put them all in one (electronic) place. Make sure you have up to date referee details, hopefully with a couple of spares.

As well as TES, make sure you’ve registered with local teacher agencies and the council recruitment page. Bookmark possible schools and their current vacancies pages. If there’s a standard LA application form – less common these days, but still possible – you might like to save a personalised copy with your information already added.

Brief digression: why the hell is there not a standard, national, teaching professional profile form? Because all the information the schools want is the same – just every form has a different, badly formatted order. Create a form, then insist every school uses it, with a one page ‘local supplement’ which teachers can then fill out. More time to spend on the cover letter…

It might be worth looking for the kind of post you’re after nationally, just to get a look at the kind of things that show up in job descriptions and person specifications. Then you can think up examples of times when you’ve done the kind of thing that matches up. This is how you can show that although you might cost more than an NQT, you’re much better value for money. (NQTs: this is where you look for non-teaching examples showing similar responsibilities and experience.)

Development

Try to see the time as an opportunity; a sabbatical, if you like! Explore subject associations and membership options. If there’s a local group, check out teachmeets and similar. If there are gaps in your skills that the CV check showed up, address them. Have you considered things like Chartered status? Even if you don’t go through the process, looking at the requirements might help inspire your next steps. And if travelling for conferences is possible, they are a great way to build your skills and knowledge. The Association for Science Education(ASE) is the obvious first choice, being teaching-specific, but don’t forget IOP/RSC/RSB either.

Quite a few universities and organisations offer free online courses – STEM Learning in particular. You can add these to your CV, of course! TalkPhysics is an example of a forum for teaching discussion where you can swap ideas, if you’d like something less structured. Or borrow some science pedagogy books, read and reflect. A nice talking point at interview…

You might like to contribute reviews on the books, or posts with developed resources, on a blog or similar. UKedchat welcomes guest posts, for example. These will start arguments and get discussions going; you might even get lucky and score some free review copies!

A different way to keep your skills up to date would be volunteering. Secondary schools sometimes want reading volunteers, but I’d also suggest looking at local primary schools. How about offering to do a primary science club for a half-term? I did this in my local primary, using the RI ExpeRimental activities, and found it really interesting. The IOP’s Marvin&Milo cartoons would also be a good starting point for accessible yet interesting activities. I had a whole new respect for primary colleagues too! You might already be a youth leader, but that’s also a possibility. Fancy running the Scientist badge for local Cub or Brownie groups?

It’s not something you want to do in September, but if you’re still looking in a few months then doing some development work gives an opportunity to get into school science departments. Choose a topic where teacher opinions would be useful or interesting, eg what resources would they use, or a survey of how they use animations in lessons. Do your research ahead of time. And then write a letter to the HoD, asking if you can visit and talk to the department to collect some anonymous data. The article will be interesting – you could even try submitting it to Education in Science or similar – and you get to talk to colleagues, sound out the school, and leave your contact details for when flu season hits…

As I said at the start, I’ve never been in a position of power when it comes to hiring, so I’d really appreciate corrections, additions and suggestions from those who have. What can Teacher X do?

Advertisements

CSciTeach Evidence

It’s odd, in some ways; for a profession which is all about leading and tracking progress for our students, we’re remarkably bad at agreeing any kind of consistent way to record what we do.

Years back I put together a Google Form for me to record what I was doing. The idea then was to match different activities to the Teacher Standards. To be honest, I didn’t use it for very long, although the process was useful in itself. Since then I’ve thought several times that a better way to track what I do is in the context of professional accreditation. For science teachers, who I work with in my day job, there are several things to consider for CPD tracking.

  1. Performance management forms are very specific to institutions, but in most cases having a record of what’s been done in between school-based INSET would help.
  2. There are several ways for a science specialist to become accredited; this is about recognising current knowledge and skills, not jumping through new hoops. CSciTeach is the route I chose, through the ASE (now also available via RSC and RSB). You may also wish to consider the new STEM Educator pathway. I have just completed the Chartered Physicist accreditation, which is available to physics teachers and teacher-trainers with appropriate experience. (I should point out I’m involved with making this better known to teachers/teacher-trainers and more information, exemplars etc will be out this autumn.)
  3. Having this information to hand can only be a good thing when it comes time to apply for new roles. I personally think it’s bizarre that there isn’t a single national application form, universal* with perhaps a single page ‘local detail’ for stuff a school feels just has to be asked. Otherwise colleagues have to waste time with many tiny variations of badly formatted Word forms, rather than their cover letters.

The thing is, who writes down every time they read/watch/observe something which ends up in a lesson? And if you do make a note of it, mental or otherwise, what are the chances of it being recorded in one central place? We end up with a formal record which has a few courses on it, and all the other ideas are along the lines of:

I think I got it at a teachmeet – was it last year? Might have been the one before. I’m pretty sure there was an article, I’ll have a look for it in a minute…

 


 

My Proposed Solution

What I’ve produced didn’t take long, and it’s only the first version – I’d really welcome ideas and suggestions for how to improve it. The idea is to gather information, reflect on impact and be able to refer back to it as evidence of professional practice.

If you want to try out the form, then feel free – this link takes you to my trial version and is not linked to the downloadable version below. You can also look at (but not edit) the resulting spreadsheet; note that the ASE guidance is reproduced on the ‘Notes’ tab. Thanks to Richard Needham aka @viciascience for some suggestions.

I’ve used the CSciTeach standards, but obviously (1) you need to do more than this form to be accredited and (2) other accreditation schemes are available.

Slide1

Slide2


Want to play around with your own version, editable and everything? You’re in luck:

1 Set-up

You’ll need a Google account. Go to the responses sheet (starting here means the formatting of the final spreadsheet is preserved.) Select ‘File’, then ‘Make a Copy’. Choose ‘Form’, then ‘Go to live form’; save the form URL as a bookmark on each of your devices. The spreadsheet URL will probably be most useful on something with a keyboard, but YMMV.

2 Capture

The form is set-up to get a few brief details fast, and then gives the option to skip to ticking relevant CSciTeach standards. If preferred, you can add the details of your reflection and impact in your setting at the same time. This completes the entry, but often you’ll want to come back when you’ve had a chance to think or try something out with students.

3 Reflect

Assuming you skip the in-depth reflection during step 2, you’ll want to return to the spreadsheet the form generates. I’ve included a few formatting points to make it work better which should be preserved when you copy it.

  • Column headings are bold
  • Columns are sized so it should print neatly on landscape A4
  • Text is justified ‘left, top’ and wrapped to make the columns readable
  • If empty, the columns for further reflection and impact are shaded red to prompt you to fill them in
  • The standards cells are shaded if at least one in that category has been ticked.

The point of CSciTeach, or any other accreditation is to recognise that ‘doing CPD’ is not a one-off event or course. Instead, it is a process, and one which should have reflection and consideration of measurable impact at its heart. This impact may be on students, teachers or both. This will very much depend on your role.

4 Share

You may prefer to keep the spreadsheet for your own reference only, using it to fill in other forms or complete applications. Sharing a Google spreadsheet is easy enough, of course; that’s the point! Just be aware that if you give ‘edit’ access, whoever it’s shared with can change your details. If you want their input – for example a professional mentor or coach – it might be better to give them permission to ‘view and comment’.

Alternatively, you might wish to search for particular examples and copy the results to a fresh document, depending on context. It would be easy to modify the form so that the Stimulus question was multiple choice, allowing you to categorise different kinds of formal and informal CPD. If colleagues think this would be more useful, I’ll create an alternate version centrally.

If, as a HoD or similar, you want to try something like this collectively, then it would be easy to adapt. Give the form URL to all team members and ask them to contribute. Whether you wish to add a question where they identify themselves is, of course, a more sensitive issue!


 

What Next?

Firstly; tell me what might be worth changing using the comments below. If I agree, then there’s a fair chance a version 1.1 will be shared soon. If you’d rather play around with it, feel free. I’d appreciate a link back if you share it.

Secondly, there are a couple of features which would be great to add. Being able to upload a photo or screenshot would be much better than copying and pasting a link, but I can’t see how to do this with a GForm. Related, if you think this could be developed into a mobile app then I’m sure the ASE would love to hear from you.

Lastly, yes, the SNAFU above* was on purpose. Those readers who understood can feel smug for exactly five seconds.

#ASEslowchat Tuesday: Practicals


I can’t comment on what is happening in my classroom, or my department. Because I don’t have a classroom; instead I work with teachers in their classrooms, supporting their departments. So most of what I’ll be sharing will be at one step removed, but it is based on what ‘real’ teachers have told me is happening in their schools. I’ve played around with the stimulus questions a little.
Which required practicals have you completed with your classes; have you only completed these, or gone beyond them? Why?

I posted a little while back about how I felt the required practicals should fit into a balanced science curriculum. (This was a different post to one from even earlier, based o a draft of the AQA required pracs.) Nothing I’ve seen has caused me to change my mind. The summary is that whether a practical is required or not it should be used in the same way; to support teaching of science content and skills. It might, of course, be worth returning to the required practicals as part of the organised review/revision schedule, because they’re effectively content. Until then, ask the same questions, practise the same skills, as you would for any practical. (And, of course, don’t neglect these aspects if a practical is ‘unrequired’!)

Has the GCSE impacted on the work of the technicians in the department? Have you had any issues with equipment?

Not being in a school full-time, I’m not sure about the workload side of this. I don’t think it’s been a huge issue – certainly compared to lots of ISAs to worry about! (I hope school technicians are being encouraged to contribute to this topic, by the way.) But I have been doing a fair bit about the physics practicals with teachers, in school and by email, so I have a few resources to point to.

There is a dedicated TalkPhysics group for the GCSE required practicals – obviously just the physics ones. It’s fairly quiet at the moment, but I/we would love to see more teachers on there swapping ideas and answers, for example about specific components for I/V graphs or precise methods for using a ripple tank. If you’re not already a member, you can get a free login in a day or so, and the group is open to all. Technicians and all teachers of physics – not just physics specialists – are welcome. Please join in.

Most equipment issues I’ve heard about have been predictable:

  • Getting a class around a ripple tank is hard. Much of the work can be done in pairs by putting a piece of laminated squared paper in a Gratnells tray – other trays are available – adding a centimetre of water with a couple of drops of ink, then making and timing ripples. Very fast, very cheap, and lots of data to criticise.
  • Dataloggers for a=F/m. As you might expect, manufacturers are trying to log complete systems which will work brilliantly for a week then be a pain to set-up and calibrate. If you can use phones in school, kids can probably use slow-motion cameras to collect some useful data. Alternatively, I’m a huge fan (no commision, sadly) of the Bee Spi V lightgate. It displays either speed or acceleration of an object passing through it. It doesn’t log it, which to my mind is an advantage as it means kids have to do the table/points/line bit themselves. They’re £20 each, run on batteries and don’t need to be plugged into any device.
  • The specific heat capacity practical – assuming you have the kit – has always produced data with, shall we say, lots to comment on. An improved method is available from PracticalPhysics, and it’s easier if you can (a) use a joulemeter and (b)record the maximum temperature, not the temperature at the end of the heating time.

How are you developing knowledge of practical work and investigations in your teaching ready for the examinations? 

‘Required Practicals’ is one of the sessions I run in schools as part of my day job with the IOP. So allow me to invite you to a virtual session, which will require you to imagine all the hands-on sections. There are presenter notes with even more links than in the slides themselves. PNCs will often run their own versions of these, and we do a lot at days and events open to all teachers. Please consider this an invitation.

If in doubt, checking out the work of Ian Abrahams is always worthwhile. He’s got a book out with Michael Reiss fairly recently: Enhancing Learning with Effective Practical Science 11-16, which I will buy as soon as my next freelance cheque arrives. Unless anyone would like me to review it, hint hint. He writes regularly in SSR so you’ve probably experienced a flavour of his work already.

A few years ago, Demo: The Movie was unleashed on an unsuspecting world by @alomshaha and co. It should be required watching for all science teachers and departments, and provides some great ideas about how to make demonstrations much better for learning. He’s got loads of films, some of which aren’t directly relevant but the techniques discussed are great. I reflected on some of the material in a blog post too.

Other resources I’d recommend (there will undoubtedly be some overlap) are collated at STEM Learning (the eLibrary that was, once upon a time). And I always like to put in a word for the SchoolPhysics materials by Keith Gibb, author of the Resourceful Physics Teacher.

Something I’ve chatted about in workshops, on Twitter and elsewhere; you may find it useful to break down the POE approach in a slightly more specific way which I call PRODMEE:

  • Predict: what do you think will happen? (encourage specific changes to specific variables)
  • Reason: why do you think that? (from other science content, other subjects, life experience)
  • Observe: what actually happens? (we may need to ensure they’re looking the right way)
  • Describe: in words, what happened? (qualitative results)
  • Measure: in numbers, what happened? (quantitative results, devices, accuracy/precision, units)
  • Explain: what’s the pattern and does it match the prediction? (digging into the mechanism)
  • Extend: why does this matter? (other contexts, consequences for everyday life)

What resources or advice can you share with other teachers about approaching a specific required practical? What issues and opportunities have you come across when going about teaching the required practicals to your classes?

A few suggestions I’ve made in workshops, often based on conversations with teachers; this is obviously an incomplete list!

  • Density is boring; why not provide a few blobs of blue-tac and have kids plot mass against volume on a graph. Make it more challenging by hiding a ball bearing inside one to provide an anomaly to the line of best-fit. Or can students separate LEGO, Mega-Bloks etc based on density?
  • Hooke’s Law: as the kids have already seen it, why not try using strawberry laces? Alternatively, there’s a simple set-up using copper wire from PracticalPhysics. And you can always use it to hammer home the idea of science-specific vocab, because ‘elastic’ bands aren’t elastic.
  • Acceleration: I mentioned Bee Spi V for measuring earlier. My only other suggestion is to always teach it as F/m=a so you start with the cause (force), shared out because of the conditions (mass) which leads to a consequence (acceleration).
  • Ripples: discussed above, but you can also use a speaker as a vibration generator for some interesting results.
  • Heat capacity: An old experiment uses lead shot which falls a known distance and heats up. Like stroking a metal lump with a hammer, this is a nice example of the idea that the energy in a thermal store can increase without ‘heating’ as we might normally consider it.
  • I/V characteristics are a lot more interesting if students must compare results from a mystery component to standard graphs. This is included in the presentation of my workshop, linked above.
  • Resistance, series and parallel: instead of just reusing the old ISA hardware, why not try taking measurements of different versions of squishy circuits dough?

 

 

 

 

Responding to “Secret Origins”

This post is a duplicate of the comment I’ve just left on a post at Vince Ulam’s blog; it’s here because otherwise the time I spent on formatting and adding hotlinks was wasted.

“These useful idiots, grateful for the imagined recognition and eager to seem important in the eyes of their peers, promote the aims and ideas of their recruiters across social media and via ticketed salons.”

It must be really nice to see yourself as immune to all this, too smart to fall for the conspiracy that everyone else has been duped by. Because, whether you intended it or not, that’s how much of the original post comes across. I think this is what put my back up, to be honest. I’ve attended two ResearchED events, one of which I spoke at. I’d like to think I earned that, rather than being recruited as a useful idiot. But then, in your viewpoint, it’s only natural I’d fall for it: I’m not as clever as you. The contrary argument might be that you’re resentful of not having the opportunity or platform for your views, but I’ve no idea if you’ve applied to present at ResearchED or anything similar. So how about we look at the facts, rather than the inferences and assigned motives you write about?

ResearchED in Context

From a local teachmeet up to national events, the idea of ‘grassroots’ activism in teaching is a powerful one. As bloggers, we both believe that practitioners can influence the ideas and work of others. And yes, I agree that appearing practitioner- or public-led, but actually being influenced by specific political parties or organisations, would be appealing to those organisations. It would lend legitimacy to very specific ideas. You only have to look at the funding of patient organisations by pharmaceutical companies, or VoteLeave and allied groups, to see the issues. But there is surely a sliding scale of influence here.

How we assess the independence of such a grassroots organisation could be done in several ways. Do we look at where the money comes from? Do we examine the people involved in organising or leading it? Do we look at the decisions they make, and how they are aligned with other groups? Do we look at who chooses to be involved, and who is encouraged/dissuaded, subtly or otherwise?

In reality we should do all of those. I think my issue with your post is that you seem to be putting ResearchEd in the same category as the New Schools Network among other groups, and (on Twitter) to be adding in the Parents and Teachers for Excellence Campaign too. I see them as very separate cases, and I’m much less hesitant about ResearchEd – partly because the focus is teacher practice and engagement, not campaigning. And you raise Teach First, which I have my own concerns about and am leaving to one side now as it’s not relevant.

The New Schools Network is (mostly) funded by government, and many have written about the rather tangled set of circumstances which led to the funding and positions expressed being so closely tied to a policy from one political party. I must admit, I find myself very dubious about anything that Dominic Cumming has had a hand in! Their advocacy and support for free schools, with so far limited evidence that they provide good value for money, frustrates me.

The PTE Campaign is slightly different. I’ve not spent time on searching for funding information but remember from previous news items – this from Schools Week for example – that it lacks transparency, to say the least. I think the name is misleading and their claim to be about moving power away from ‘the elites in Westminister and Whitehall’ to be disingenuous.

And let’s not even start with Policy Exchange.

From where I sit, if you want to group ResearchED with other education organisations, a much better match would seem to be Northern Rocks. The focus is improving and sharing classroom pedagogy, rather than campaigning. They’re both run on a shoestring. Classroom teachers are keen on attending and praise what they get out of the sessions. I can’t find anything on your blog about Northern Rocks, but that could be simple geography. (The bitter part of me suggests it’s not the first time anything happening past Watford gets ignored…)

Back to ResearchED: Funding and Speakers

“We have to hand it to Tom Bennett for his truly amazing accomplishment of keeping his international ‘grassroots’ enterprise going for four years without producing any apparent profits.”

Maybe it’s me seeing something which isn’t there, but your post seems to imply that there must be some big funding secret that explains why ResearchED is still going. What do you think costs so much money? The speakers are volunteers, as are the conference helpers. I don’t know if Tom gets a salary, but considering how much time it must be taking it would seem reasonable for at least a few people to do so. The catering costs, including staffing, are covered by the ticket price. The venues I remember are schools, so that’s not expensive.

As you’ve raised on Twitter during our discussions, the question of transport for UK-based speakers to overseas venues is an interesting one. I know that when I presented at Oxford (the Maths/Science one), my employer covered my travel costs; I assume that was the same for all speakers, or they were self-funding. If you have other specific funding concerns, I’ve not seen you describe them; you can hardly blame me for focusing on this one if you’d rather make suggestive comments than ask proper questions. I would also like to know if speakers can access funding support and if so, how that is decided. I can’t find that information on the website, and I think it should be there. I disagree with lots of what you say – or I wouldn’t have written all this – but that loses legitimacy if I don’t say where we have common ground.

I was surprised to find out how many ResearchED conferences there had been; I was vaguely thinking of seven or eight, which is why I was surprised by your suggestion that David Didau had presented at least six times. I stand corrected, on both counts. Having looked at the site, I’m also surprised that there’s no clear record of all the events in one place. A bigger ask – and one I have addressed to one of the volunteers who I know relatively well – would be for a searchable spreadsheet of speaker info covering all the conferences.

That would be fascinating, wouldn’t it? It would let us see how many repeat speakers there are, and how concentrated the group is. My gut feeling is that most speakers, like me, have presented only once or twice. Researchers would probably have more to say. I’d love to see the gender balance, which subject specialisms are better represented, primary vs secondary numbers, the contrast between state and independent sector teachers, researcher vs teacher ratios…

I’m such a geek sometimes.

You tweeted a suggestion I should ignore my personal experience to focus on the points in your post. The thing is that my personal experience of – admittedly only two – ResearchED conferences is that any political discussion tends to happen over coffee and sandwiches, and there’s relatively little of that. Maybe there’s more at the ‘strategic’ sessions aimed at HTs and policy-makers, rather than the classroom and department methods that interest me. If there’s animosity, it’s more likely to be between practitioners and politicians, rather than along party lines. I suspect I have more in common, to be honest, with a teacher who votes Tory than a left-leaning MP without chalkface experience. It’s my personal experience that contradicts the suggestions in your post about ResearchED being part of a shadowy conspiracy to influence education policy debate.

To return to Ben Goldacre, featured in your post as a victim of the puppet-masters who wanted a good brand to hide their dastardly plans behind: his own words suggest that in the interests of improving the evidence-base of policy, he’s content to work with politicians. Many strong views have been expressed at ResearchED. With such a wide variety of speakers, with different political and pedagogical viewpoints, I’m sure you can find some presentations and quotes that politicians would jump on with glee. And I’m equally sure that there are plenty they ignore, politely or otherwise. But I don’t believe the speakers are pre-screened for a particular message – beyond “looking at evidence in some way is useful for better education.” To be honest, I’m in favour of that – aren’t you? If there’s other bias in speaker selection, it was too subtle for me to notice.

But then, I’m not as clever as you.

Energy Language Thoughts Part 4

Parts 1 (Introduction), 2 (Pathways/Processes) and 3 (Stores) are all available and will help make this more useful. Please continue to comment, on whichever post seems most relevant, if you’ve any queries or suggestions. Thanks to those who have already done so.

Practical Approaches

stores-or-pathways

The IOP guidance begins by taking snapshots before and after an event and describing the changes to various possible associated stores. The alternative is to think about the physical processes – which will be variably familiar to students, depending on age – and thinking about the effect they have on parts of the system. YMMV.

The famous energy circus can be used, but be cautious! Some make much clearer examples than others. In most cases you will need to be very specific about the start and end points you wish the students to consider. I recommend checking out the SPT guidance. In particular, the ‘one step at a time’ diagram shows why chains of energy can cause problems. The suggestion there, which I endorse, is that you:

  1. start with the idea of fuels ie chemical stores
  2. make clear that fuels limit effects, they don’t by themselves cause the effects
  3. give high, hot and stretched objects as equivalents, but as they’re clearly not fuels we associate them with
  4. gravitational, thermal and elastic stores respectively

Explained at SPT

I’d suggest looking at your energy circus for clear demonstrations of these to begin with. Next would come a kinetic store, probably as an endpoint. A gyroscope or Newton’s cradle is a nice example of a kinetic store which lasts long enough to be plausible.

Approaches to consider

You could have a first round to develop some basic ideas, then a second with more complex snapshots (either more than one store involved at the end, or the same kind of store but associated with different objects).

Have students identify just the stores to begin with, discuss them as a class, then come back and add descriptions for the processes. This could be split between lessons; that way you can provide correct stores in the second lesson and concentrate on processes. In some cases, such as the classic filament bulb, two similar pathways will be needed.

  • From: thermal store of filament
  • Via: heating by visible radiation, heating by IR radiation
  • To: thermal store of air in the room

If you want them, here are energy-circus-cards as pdf (includes example and blank cards)

Provide sets of laminated cards with stores, and arrows for the descriptions of processes. Labelled arrows are of course an option, but be aware of limitations and I’d include some blanks.

Again, cards-for-energy-v3 as pdf to save you a few minutes.

An extension could be to suggest measuring equipment and/or units for the relevant stores in each situation. If returning to these examples at GCSE, then recall of the equations are the natural next step.

Consider including actual photographs for some situations that cannot be easily reproduced in the lab; this would be a good way to introduce some examples from biology and chemistry. A food chain in biology might, for example, be described so:

  • From: chemical store of lettuce
  • To: chemical store of rabbit

Then

  • From: chemical store of rabbit
  • To: thermal store of rabbit, kinetic store of rabbit, chemical store of fox

And finally

  • From: thermal store of rabbit, kinetic store of rabbit
  • To: thermal store of air

For chemistry, exothermic reactions will involve heating by particles and/or heating by radiation pathways. If the material explodes (which in my experience is the preferred result) then there is some kind of mechanical working too, yes? Be prepared for questions about state changes; the best approach is that latent heat means the thermal store is not only identified by the temperature change. Which, yes, is a complication.

It’s probably worth adding notes – mental or otherwise – to the other science topics so you can remind students of the new language. If you have particular queries, drop me a line in the comments or, for a more considered answer, join in with the discussions on TalkPhysics.

This seems like a good chance to consider the Big Ideas in Science Education. Which should be up anyway, somewhere, but it’s always nice to have a reminder.

Exams and Textbooks

This is where I must admit defeat. I know – in fact I started the first post in this series with this point – that teachers want to know what will get marks and what won’t when it comes to the exams. Sadly, I don’t know. At least one board used the old language in the sample papers originally made available. The list of stores is not consistent between boards, though I hope that makes more sense after Part 3. And so on.

I’m sure we’ll all be happier once we see more examples of possible questions, but I’m not involved much with the boards so I have no insight. My advice – which isn’t official IOP guidance, nor is it specially informed – is that if your students can explain the mechanisms behind the transfers, they shouldn’t need to worry about the language, either pathways or processes. For the stores, it’s probably more important that they can identify the equations that are relevant and be able to do the maths – that, of course, hasn’t changed! I’ve recently discovered that Richard Boohan is putting together some materials; I shall be watching with interest.

Whether students will be penalised for talking about light energy, sound energy, electrical energy – that I don’t know. I also don’t know how much emphasis will be placed on this language by those marking biology and chemistry questions. So I’m not much good, really. Sorry!

Last appeal for comments, feedback, criticism… please let me know what you think of these four pieces. At well over 3000 words I appear to have accidentally written an essay. I hope that if you’ve waded through it, you feel it was worth your time. Please do give me a shout if there’s something I can do to improve the time spent vs time saved ratio.

Energy Language Thoughts Part 3

As you would expect, this follows on from Part 1 (Introduction and Summary) and Part 2 (Pathways/Processes). Even if you’ve read them, you might want to look back at the comments readers have made  – many thanks to everyone who has been able to take the time.

Descriptions vs Labels: Stores

The stores are not simply renamed ‘energy types’. A lot of them use similar words, but that’s because they’re trying to describe the same physics. They represent the changing properties of a part of the system, caused by it gaining or losing energy. When a steel block undergoes physical processes, it changes in a measurable way. It might change shape. Its temperature might change. It might be moved away from the Earth’s surface. It is a shame that exam boards are taking different approaches, but the eight suggested by the IOP are:

  • chemical store
  • thermal store
  • kinetic store
  • gravitational store
  • elastic store
  • nuclear store
  • vibration store
  • electric-magnetic store

More details at SPT

Like the processes, there are sometimes more than one way to consider what is happening. If a gas is heated, the change could be considered in terms of the measured temperature change (thermal store), or in the increased movement of the particles (kinetic store). Realistically, there are not many situations where two stores will seem equally appropriate. And when they are, this is actually a strength. The two approaches will give values for the energy change which are the same. Energy is energy, whether it is considered in the context of a thermal or kinetic store. The whole point of using energy as a ‘common currency’ is that is translates between contexts.

The stores, as discussed in my introductory post, are each a way of considering a physical measurement and an associated equation. The idea is that you consider the ‘before’ and after’ situations for relevant stores, as snapshots. (The exception, for school-age students at least, is a chemical store where the values are found empirically.) I produced, based on some ideas from IOP colleagues, some energy store ‘bookmarks’ which bring together the different aspects. They wouldn’t take long to put together, but you’re welcome to my version:

stores-bookmarks as pdf

Common Variations

The vibration store can be considered as a kinetic store which oscillates. The easier measurement is not speed but amplitude and time period. Imagine trying to find a meaningful value of the speed of a swinging pendulum, for example. But some boards are omitting it, which is fairly easy to justify.

I’m less happy that at least one exam board (AQA) miss out the nuclear store entirely. This seems like a huge mistake to me as it uses the one equation pretty much everyone knows from physics, E = mc2! It would also make it impossible to start with the sun, which makes most biology a bit tricky. (From nuclear store via particle heating processes to sun’s thermal store then via radiating processes to Earth’s thermal store and biomass chemical store)

The electric-magnetic store – not electromagnetic – is about the position of objects within two kinds of field. Now, I know they’re related – Maxwell’s equations and all that – but I think for most students it’s a lot easier to consider two separate stores, the magnetic and the electrostatic. The upside is that this means you can clearly link them to gravitational stores and so cover fields as a ‘meta-model’. The downside is that it makes the stores list look even more similar to the old approach. If you take this tack, make sure you emphasize that it’s an electrostatic store to clearly distinguish from the electric current pathway.

Which brings me to…

What about light/sound/electricity?

The SPT resources have some very good explanations on this. My reasoning is that they are processes which only have meaning if we think about duration. To describe them in numbers, we use power in Watts rather than energy in Joules. So they are, obviously, real physics effects. But they fit best into this model as processes shifting energy between stores, rather than stores themselves.

Disclosure: my issue with this is that a very strict interpreation of thi would seem to rule out kinetic stores as well. The snapshot approach – comparing the change to stores in between two static frames – makes it hard to reconcile a moving object with a single instant. Hmm. Although we have no problem with considering momentum at a moment in time, yes? Contrariwise, students may have an image of light as being made up of photons as moving objects, or when older the equation E=hf. Hmm again. And what about latent heat? This is best considered as a special term of the thermal store, but it’s not obvious. (Thanks to my colleague Lawrence Cattermole for reminding me of this today.) Of course, no model is perfect. The test is whether this approach is better than the ‘types’ of energy approach that has been so pervasive.

‘Better’, of course, is not a very scientific term! It is more accurate when describing the physical processes. The words are a closer narrative match to the equations students will need to use as they develop their physics. The model is different to what we and our students are used to, but objecting to it on that basis seems short-sighted. As I originally said, you could argue that the timing is unfortunate, with new specs and grading systems, but I don’t think we’d ever be at the point where all science teachers welcomed a change with open arms.

As always – please comment, respond, shout angrily at me using the field below.

Energy Language Thoughts Part 2

The previous post was a summary or introduction – thanks to all those who have commented already – and tomorrow I’ll be moving on to stores in more detail. But for now…

Descriptions vs Labels: Processes

To make life easier, humans like to use shorthand for complex processes. These are categories or labels, not detailed descriptions. Many pathways or processes can be put into one of these categories, but the aim should always be end up able to describe what is actually happening.

  • Heating by particles
  • Radiating (aka heating by radiation)
  • Electrical working
  • Mechanical working

Longer explanation at SPT

How we choose these categories will alter our interpretation. For example, are sound waves a form of mechanical working? Or do we include all waves in the ‘radiating’ category? The physics description of what is happening is what we and our students should be concentrating on, because it doesn’t change. The ideas about Johnstone’s Triangle that I’ve read about via Michael Seery’s blog, from chemistry education, has obvious parallels.

johnstones-triangle-1024x573

Reproduced from Michael’s post, credited to University of Iowa.

If we can link the macro (observations in lab) and sub-micro (particles and interactions) levels, the symbolic can wait. A similar discussion is had on SPT about alternating between the lived in world and a theoretical model.

Avoiding using these categories – which by their very nature are imprecise – might be worth considering. It would be very easy for students to think they have to assign any physics process to one of the four listed above, without really thinking through what’s happening. (If you’d like to consider symbolic approaches, I’d suggest checking out the physical versions of energy bar charts as described here by Greg Jacobs.)

As pointed out by several – most recently Richard Needham on Twitter – changing how energy is described in physics lessons means nothing if we can’t apply this to biology and chemistry. And it needs to make more sense there too! In school chemistry, heating and radiating (in the form of light-emitting) will be the significant processes. The equations used later on for enthalpy change – endo and exo-thermic reactions and so on – work nicely with this framework. In school biology, the transfer of energy is usually about photosynthesis (a radiating pathway fills a chemical store by the production of glucose/oxygen) or nutrition/metabolism. (More about stores in the next ‘chapter’.) One of my jobs is to have a closer look at the KS3 specification for any mention of energy in chemistry and biology and see what I’ve missed – please let me know in the comments if this has been done already!

I’ve heard – and contributed to – discussions about other possible pathways, perhaps useful for younger students. The regular suggestion is reacting, which would include chemical reactions in cells (aka metabolic-ing) as well as the lab. The shift happens between two chemical stores. The physics process, if we look closely enough, is about electron exchange between atoms. But I wouldn’t want to have that level of explanation in a year 7 lesson! As ever, the question is about us choosing a realistic level of detail for our students at any particular time.

The Power of Processes

I wrote earlier that we weren’t interested in how quickly a process worked. That’s obviously not always true; rates are very important in physics! So the process can happen quickly or slowly, which changes the magnitude of the final change in the relevant stores. This tells us that processes are about power, not just energy. (Thanks to Brendan Ickringill who pointed out the word rate is important.) The analogy I use is that of the carbon cycle. Asking how much carbon is ‘in’ plant biomass at any point is a meaningful question, if not an easy one. But it makes no sense to ask how much carbon is ‘in’ combustion, or any other process. They are rates, not amounts.

My colleague Trevor Plant reminded me of the need to change how we use Sankey diagrams for this new approach. The width of the arrow can now describe the power of the process, transferring or shifting energy between stores. A lot of the same questions could be asked, and efficiency is still a helpful consideration. We’d now think about useful processes (with values in watts) and wasteful or dissipative ones. As ever, we’d need to distinguish between similar processes; for example, energy shifted to the thermal store of water in a kettle is useful, whereas heating of the air around it is not.

Effectively what we’re doing here is describing what the ‘magical arrow of energy transfer’ is symbolising. A useful resource is a set of laminated arrows which students can write on for descriptions of the physical processes. You could provide some with descriptions on them, but the danger is that the class – or the loudest member of it – will then choose a best-fit rather than something more accurate. If you also supply laminated cards – as boxes, not arrows – with the eight stores on them, they are ‘encouraged’ towards the new model. These might be particularly useful to analyse a chosen selection from the famous energy circus.

On this theme, I produced some cards to go on the electrical sockets in the lab. The idea is to remind students that the current comes from somewhere else, and that the electrical supply is a pathway/process, not a store. Download below.

power-stations as pdf

As before, I hope the discussion here is useful – and please respond in comments if there’s something I’m missing out! Next post will be looking at stores in more detail, then hopefully a last one at the weekend on practical approaches and ways to adapt what you used to use!