You’re Welcome, Cambridge Assessment

It’s not often I can claim to be ahead of the trend. Pretty much never, to be honest. But this time I think I’ve managed it, and so I’m going to make sure all my readers, at least, know about it.

Recently the TES “exclusively reported” – which means other sites paraphrased their story and mentioned their name, but didn’t link – that Cambridge Assessment was considering ‘crowd-sourcing’ exam questions. This would involve teachers sending in possible questions which would then be reviewed and potentially used in external exams. Surplus questions would make up a large ‘question bank’.

I suggested this. This is, in fact, pretty much entirely my idea. I blogged ‘A New Exam Board’ in early 2012 suggesting teachers contribute questions which could then provide a range of sample papers as well as external exams. So it is not, despite what Tim Oates claims, a “very new idea.” Despite the similarity to my original post I do, however, have some concerns.

Backwards Backwards Design

So instead of teachers basing their classroom activities on giving kids the skills and knowledge they need to attempt exam questions, we’re doing it the other way around? As I’ve written before, it’s not necessarily a bad thing to ‘teach to the test’ – if the test is a good one. Writing exam questions and playing examiner is a valuable exercise, both for teachers and students, but the questions that result aren’t always helpful in themselves. As my OT-trained partner would remind me: “It’s the process, not the product.”

Credit

Being an examiner is something that looks good on a CV. It shows you take qualifications seriously and have useful experience. How can teachers verify the work they put into this? How can employers distinguish between teachers who sent in one dodgy question and those who shared a complete list, meticulously checked and cross-referenced? What happens when two or more teachers send in functionally identical questions?

Payment

A related but not identical point. How is the time teachers spend on this going to be recognized financially? And should it be the teacher, or the school? Unless they are paid, teachers are effectively volunteering their time and professional expertise, while Cambridge Assessment will continue to pay their permanent and contract staff. (I wonder how they feel about their work being outsourced to volunteers…)

Quality

It’s hardly surprising at this early stage that the details aren’t clear. One thing I’m interested in is whether the submissions shared as part of the ‘questions bank’ will go through the same quality control process as those used in the exams. If so, it will involve time and therefore money for Cambridge Assessment. If not, it risks giving false impressions to students who use the bank. And there’s nothing in the articles so far to say whether the bank of questions will be free to access or part of a paid product offered.

Student Advantage

Unless there are far fewer ‘donated’ questions than I’d expect, I don’t think we will really see a huge advantage held by students whose teachers contributed a question. But students are remarkably sensitive to the claims made by teachers about “there’s always a question on x” or “it wasn’t on last year’s paper, so expect y topic to come up”. So it will be interesting to see how they respond to their teachers contributing tot he exam they’ll be sitting.

You’re Welcome

I look forward to hearing from Cambridge Assessment, thanking me for the idea in the first place…

 

Advertisements

Variations on a Theme

It turns out that I’m really bad at following up conference presentations.

Back in early June, I offered a session on teachers engaging – or otherwise – with educational research. It all grew out of an argument I had on Twitter with @adchempages, who has since blocked me after I asked if the AP Chem scores he’s so proud of count as data. He believes, it seems, that you cannot ever collect any data from educational settings, and that he has never improved his classroom practice by using any form of educational research.

But during the discussions I got the chance to think through my arguments more clearly. There are now three related versions of my opinion, quite possibly contradictory, and I wanted to link to all three.

Version the first: Learning From Mistakes, blogged by me in January.

Streamlined version written for the BERA blog: Learning From Experience. I wrote this a while back but it wasn’t published by them until last week.

Presentation version embedded below (and available from http://tinyurl.com/ian-redmatsci if you’re interested).

I’d be interested in any and all comments, as ever. Please let me know if I’ve missed any particular comments from the time – this is the problem with being inefficient. (Or, to be honest, really busy.) The last two slides include all the links in my version of a proper references section.

Thoughts from the presentation

Slide 8: it’s ironic that science teachers, who know all about using models which are useful even though they are by necessity simplified, struggle with the idea that educational research uses large numbers of participants to see overall patterns. No, humans aren’t electrons – but we can still observe general trends using data.

Slide 13: it’s been pointed out to me that several of the organisations mentioned offer cheaper memberships/access. These are, however, mainly institutional memberships (eg £50/yr for the IOP) which raises all kinds of arguments about who pays and why.

Slide 14: a member of the audience argued with this point, saying that even if articles weren’t open-access any author would be happy to share electronic copies with interested teachers. I’m sure he was sincere, and probably right. But as I tried to explain, this assumes that (1)the teacher knows what to ask for, which means they’ll miss all kinds of interesting stuff they never heard about and that (2)the author is happy to respond to potentially dozens of individual requests. Anyone other than the author or journal hosting or sharing a PDF is technically breaking the rules.

Slide 16: Ironically, the same week as I gave the presentation there was an article in SSR on electricity analogies which barely mentioned the rope model. Which was awkward as it’s one of the best around, explored and endorsed by the IOP among many others.

Slide 20: Building evidence-based approaches into textbooks isn’t a new idea (for example, I went to Andy’s great session on the philosophy behind the Activate KS3 scheme) but several tweeters and colleagues liked the possibility of explicit links being available for interested teachers.

Axes of Mathematical Doom

Just think… in a few weeks, you’ll have a new crop of brand-new Year 7 students. Shiny faces, uniforms without holes and a complete pencil case. For about a day.

So it’s nearly time to teach graphs.

You may have already seen the resources produced by the ASE on the Language of Maths in Science (LoMiS). If not, go download them for free and have a look. It’s worth it, really. For a quick taste, Richard Needham did a piece for the Royal Society of Chemistry a while back which is a great introduction to the aims of the project.

And here’s an approach I’ve come up with which you may find a useful beginning. It’s based on what I’ve done in lessons in the past with a final addition I’ve been discussing recently with delegates and colleagues at the SPN Oxford Summer School.

1 coordinates

 

1 Number Lines

Putting numbers in sequence on a line is something students start to do at a young age, long before secondary school. To be honest, if kids can’t put whole numbers in the right order then graphs are going to be a distant dream. I agree that decimals make this harder at times, but I’m working on something about that too. Next week, maybe.

So give students a list of values and ask them to put them on a number line in order. Add challenge by having them convert values between units first, or have different numbers of significant figures. Top half of image:

Number lines

2 Number Lines to Scale

They might do this automatically. If not, it shouldn’t be too hard to have them do so (image above). Once they have a scale sorted out for the line, placing laminated cards for your supplied values along it should be straightforward.

3 Number Line to Scale = Axis

If you now have your students put the two number lines (one from each set of values) at right angles, they should be able to see that they’ve defined each point.

4 Mathematical Axes Of Doom

Two wooden dowels from B&Q (other DIY stores are available), with insulation tape wrapped round at regular intervals. I deliberately chose different intervals. Next time, I’d probably use wooden dowels with rectangular cross-section, simply so they don’t roll. You could use metresticks but I wanted to avoid any numbers. The tape is all you need, really.

2 axes

Put them at right angles and you have a set of axes, with the intervals clearly marked. Add the coordinate cards – because students have used the idea of a coordinate system for a lot longer than they’ve used graphs to tell a story – in the right places. They’re easy to adjust, so there’s less stress. (Low stakes, yes?) And if they look from above, any pattern is clear and anomalies can be considered. They can even see the best-fit line.

3 plotted

Extension ideas; use larger or smaller cards to get over the idea of precision in the readings. There is a link here to the idea of error bars, something we don’t usually cover but may find useful.

Thoughts, ideas, suggestions? Please let me know in the usual ways.

NB: you get funny looks if you carry the sticks on to a train.