SciTeachJC: Strengthening the Student Toolbox

A quick post to flag up a long-awaited #SciTeachJC I’ll be moderating in either a week or a fortnight. It was originally planned to be the week after half-term; for various reasons I’ll make the executive decision to postpone until Tuesday 10th June if there’s not enough time for those interested has a chance to read the paper.

We’ll be discussing a very topical article, about student strategies for recall and understanding, by John Dunlosky. It’s a 2013 article from American Educator and considers how to help our pupils realize that last-minute cramming is not the best approach.

Questions for discussion:

  1. How do you use these methods at the moment? Which one would you choose to adopt as the most significant improvement from your current position?
  2. Many students – and to an extent parents and colleagues – intuitively distrust the concept of distributed, spaced testing. How can we address this?
  3. How can we ensure students use explanations and links to previous material while revising to boost understanding and recall?
  4. Could we set up programmes of study that would demand/encourage gradual accumulation of knowledge? How does this approach contrast with the demands of the exam system?
Hopefully this will be shared and perhaps even copied to the SciTeachJC website – I’ll sort that once I’m near a proper keyboard again. Until then, I hope that colleagues will find this interesting enough to consider even during halfterm.
Advertisements

Heat Misconceptions

Like many of us, I’m currently spending the majority of my time helping students prepare for external exams. Because of how science exams now work in secondary school, most of my classes are facing one or more exams in the next few weeks, just for physics. Seven classes are doing GCSE content (2 x Yr9, 3 x Yr10, 2 x Yr11) and two classes are in sixth form.

Something I’ve spent a little time on has been prompted by the variety of answers to mock questions on heat transfer. It was clear that many able students were struggling with clear explanations – and perhaps understanding – of mechanisms of the transfer of thermal energy, as demonstrated by Qs 4 and 5 on the AQA P1 June 2013 paper. So I looked into it.

Examiner’s Reports

My first step was to check whether this was an isolated case or something seen for these exam papers when originally sat. I strongly recommend all colleagues, if they’re not already familiar with it, find where they can read the reports written after the exam for the benefit of teachers and exam boards. They’re available (delayed) for pupils too, but with AQA you need to go through the main subject page rather than to the quick ‘Past Papers’ link.

…nearly half of students scored two marks or less. Common mistakes were referring to ‘heat particles’, thinking that the vacuum stopped all forms of heat transfer, thinking that the vacuum contained air and referring to the transfer of ‘cold’.

…Students who referred to water particles often mistakenly referred to them ‘vibrating more’ as a result of the energy given, or to the particles themselves becoming less dense.

From AQA P1 June 2012 Report

So it wasn’t just my kids.

Now What?

I think of myself as a fairly evidence-based practitioner, so next I wanted to check out some wider sources. A quick search for ‘physics misconceptions heat’ has a large number of results, including one from more than 20 years ago which shows how established the problem is.

As a science teacher, Physics Education from the IOP and School Science Review from the ASE seemed a good place to look. Unfortunately both require memberships, a problem in terms of cost which I’ve blogged about before. Students’ misconceptions about heat transfer mechanisms and elementary kinetic theory is relevant, as is this resource available without login on the ASE site. R Driver’s book Making Sense of Secondary Science was one of several recommended during an #asechat “What misconceptions do students have in science?” in 2011.

I used the students’ answers as a way to diagnose the ‘alternative conceptions’ that they had built up over time. For many these had clearly been established long before my arrival, but I’m going to build some of the ideas into my next cycle of teaching for early intervention. Some of the points from Cyberphysics UK and PhysicsClassroom.com were also useful. What I produced – firstly as a scribbled list, then as a more formal activity, was the ‘Seven Sins of Heat Transfer’. In time I’d like to produce some confidence grids and link these to the diagnostic questions approach as explained at York Science. Concept cartoons with clear viewpoints let students explore different models without ‘owing up’ to ideas they think are wrong, which can be very helpful. And so here’s one of the great @DoTryThisAtHome cartoons:

 

Seven Sins of Heat Transfer

  • Heat rises
  • Particles of heat
  • Expanding particles
  • Shiny materials are good conductors
  • Cold gets in
  • Condensing and contracting are the same
  • Trapped particles can’t move through a vacuum flask

These are what I wrote while marking papers; I’ve just removed the profanity. My reading showed me that some were common alternative conceptions, while others demonstrated a poor understanding of technical terms, often made worse by persistent misuse in ‘everyday’ language. A bit of thinking, and more reading, helped me find ways to highlight these issues for students.

Printable version with prompt Qs: 7sins as .pdf

EDIT: I shouldn’t have needed prompting, but CathN suggested in the comments that model answers would be useful, particularly for non-specialists. And so I’ve put together a presentation going through each of the sections, explained more or less the way I would in class. Obviously colleagues will have their own thoughts and preferred analogies, but I’d love comments on possible improvements; simply click on the title slide below.

7sins

Alternatively: 7sins as .ppt

When time allows during revision, and certainly next time I teach this content, I’ll be linking these misconceptions explicitly with practical activities. I think I’ll also ban the use of ‘heat’ by itself. If students are forced to use ‘collisions between touching particles’, ‘energetic particles in a lower density region’ and ‘thermal radiation’ then we should be able to solve the sloppy language issue, at least.

Thoughts and comments on this very welcome; it strikes me that I could usefully spend time producing a series of lessons and resources on just this sort of thing. Exam question followed by diagnostic questions, circus of activities to highlight misconception, then applications of correct idea to new situation. So if anyone wants to pay me, well, you know where I am…

In the meantime:

I’m trying to track my impact (eg you using this resource or basing your own on my ideas). You don’t have to leave your name, just a few words about how what I did made a difference. If you’ve blogged about it, I’d love for you to include a link. Tweets are transient, comments on the posts are hard to collect together, but this would really help.

Blog Feedback via Google Form

 

Current Electricity and Revision Thoughts

It’s that time of year, but I’ve not been able to post much about revision lessons and activities because I’ve been too busy doing them. And because of other projects, too. So my apologies for the long absence.

P2 electricity quick ref (as pdf)

This grew out of activities trying to help students make clear links between past questions and revision content. It was intended to be a fast way for them to check details (using the QR codes, which link to websites including BBC Bitesize and My GCSE Science) without getting bogged down in minutae. Time is short with Year 11 and this kind of approach should work well with revision classes, allowing self-directed study which you can then explain when they visit for extra sessions – I combined it with some relevant questions, broken down by topic.

Having students creating something like this would also work well. I’m going to try giving them an electronic blank with four spaces to write their own questions, but insist they add links to different resources which contain the answers to each of the four.

When revising, as usual I’m asking students to focus on active rather than passive techniques. A recent activity challenged them to suggest ways of turning common but less engaged methods into more dynamic ones.

Not Just Reading

It’s very telling when a student is asked how they revise, and respond with ‘looking at the revision guide’. Simply reading is too passive, but the use of looking suggests even less engagement. We came up with:

  • Pause to write summary sentences or bullet points
  • Highlight/underline key words, practise definitions
  • Cover/copy/check
  • Convert format to revision cards (paper or electronic), mindmaps or similar
  • Write questions (split between recall, explanation and mathematical) linked to content

Questions

Practice questions are of course a very useful way to prepare for exams, even if the focus inevitably turns to exam technique rather than understanding. I’ve blogged before about useful variations but most recently have been relying on:

  • BUS structure (from Twitter, can’t recall source) where students box command word, underline key points in question and scribble additional vocab to include
  • Write three hint words and pass to a classmate who has to use those words
  • Write an alternative question (convert maths Qs to words and versa vice) testing similar content
  • Produce a deliberately mid-level answer and add commentary for how to improve

Videos/Podcasts

The links in the worksheet include one to the video archive, Khan Academy style, of My GCSE Science. Some of these have built-in pauses but even if not, I’m encouraging my students to use a very specific format which also works for audio, such as the Naked Scientists podcasts hosted at the BBC.

  1. Write title and spend a couple of minutes bullet pointing what you think will be in it.
  2. Watch/listen to first few minutes, then pause.
  3. Tick what you were right about, adding details/examples where needed, and add main points you’d not remembered.
  4. Bullet point what you think will be coming next.
  5. Next few minutes, then pause and repeat.
  6. Once finished, attempt a question relating to the content, referring back to notes if needed.

One Hour to Success

It’s amazing, as usual, how many seem to think that putting their phone to one side is unreasonable while revising. I suggested to several parents recently that phones should be given to them during an active revision session in exchange for tea and biscuits

  • 0-15 min: active revision using methods above
  • 15-20 min: break, with cuppa, parents looking at written work while student texts their mates, then returns phone
  • 20-35 min: attempt and mark a past paper question on revised content
  • 35-40 min: second break, student loads dishwasher (including used mug) while parent looks at the exam answer
  • 40-55 min: worked examples and further practice of weak areas as identified, or simply learning vocab that’s relevant.
  • 55-60 min: write title of next revision priority on a new sheet of paper, ready for next time, placed in revision guide at relevant page.

I wonder how many will stick to it…

Portfolio

I’m trying to track my impact (eg you using this resource or basing your own on my ideas). You don’t have to leave your name, just a few words about how what I did made a difference. If you’ve blogged about it, I’d love for you to include a link. Tweets are transient, comments on the posts are hard to collect together, but this would really help.

Blog Feedback via Google Form